
18 CROSSTALK The Journal of Defense Software Engineering September 1999

Background
The Y2K problem centers on the interpretation of a two-digit
code representation of a year. Simplified, the Y2K problem may
be seen as many computer software applications that have been
programmed to interpret the two-digit year range of 00 ... 99 as
meaning the years ranging from 1900 to 1999. Other software
applications interpret 99 as an end-of-file or end-of-data mark-
er. Regardless of how the problem is defined, one will interpret
it as catastrophic when one’s critical need is not addressed or
addressed incorrectly — sometimes with irretrievable results.

Because of costs or lack of programmer resources to correct
the source code (assuming that the source code is available and
that an executable image may be generated) the basic quick
fixes for the Y2K problems often cause two effects:

1. delaying the impact of the Y2K problem by using
techniques to interpret various ranges of dates such as
bridging, sliding, or fixing windows.

2. exchanging what is essentially either a single date or a well-
defined collection of dates for multiple dates with unknown
impacts.

Regardless of the “fix” used for the Y2K problem, formal
Y2K testing to a set of Y2K objectives should be done to assess
the level of risk to which the users of those applications are
exposed.

Unit Testing vs. Integration

(Interoperability) Testing

In more traditional software testing environments, unit testing
of an application (e.g. software using services and facilities pro-
vided by an information system specific to the satisfaction of a
set of user requirements) usually involves the testing of a mod-
ule within a larger, whole software application entity. In the
context of this article, unit testing of an application involves the
whole of a single software application entity. The software appli-
cation may perform specified function(s) within the computer
system. Unit testing usually is performed on a hardware plat-
form (e.g. a collection of hardware and software components
that provides the services used by support and mission-specific
software applications) with or without other software programs
being visible, such as an operating system. Note that the hard-
ware platform may include a client/server-based system or a
Web-based system and their respective required software to
enable each system to function as designed. Unit testing is not
integration testing but is generally performed prior to integra-

tion testing.
Again, in more traditional software testing environments,

integration testing usually involves the testing of the aggregate
of the modules comprising the whole of the software application
entity. In this article, integration testing is defined as an orderly
testing of each of the pieces of the software applications, as
defined by the user or the system specifications, in which soft-
ware applications, hardware elements, or both are combined
and tested to show compliance with the program design, and
capabilities and requirements of the system and/or the user’s
needs and uses. Integration testing is aimed at exposing prob-
lems that arise when two or more applications are combined on
a hardware platform. As with unit testing, the hardware plat-
form may include a client/server-based system or a Web-based
system and its respective required software to enable each sys-
tem to function as designed. Typical problems identified during
integration testing are improper call or return sequences, incon-
sistent data validation criteria, or inconsistent handling of data
objects. Integration testing generally is performed following suc-
cessful unit testing or “software developer” integration testing of
a collection of applications.

One important objective in software testing is the valida-
tion of the application(s) under test (e.g. those applications that
are subject to testing requirements). Validation testing is a
process of assessing the conformance of one or more software
applications to one or more standards or to a set of specifica-
tions. This process includes the administrative procedures to set
up conformance assessment and to issue some formal docu-
ment, such as a certificate or test report, that an agreed upon or
recognized process was followed and that records which of all
tests presented were passed. For tests that were failed, the formal
document notes which tests failed and specifies the functionality
assessed. The user of the formal report documenting failed tests
may find that the functionalities represented by the tests are not
needed.

Why Perform Integration Testing?
The primary purpose of testing is to satisfy a customer’s needs
and requirements. Unit testing primarily assesses the validation of
an application by itself. However, when multiple applications
share resources, the closer the testing environment is to that of
the customer’s environment the more likely that testing will
detect anomalies. By design, integration testing encompasses mul-
tiple applications and uses either the customer’s environment or a
separate test environment that closely duplicates the customer’s

A Y2K Integration Test Model

Dr. William H. Dashiell
National Imagery and Mapping Agency

An Integration Test Model provides Year 2000 (Y2K) integration test
objectives keyed to specific integration test cases. This article describes a
suggested basic year 2000 (Y2K) test model with lessons learned.

September 1999 CROSSTALK The Journal of Defense Software Engineering 19

environment.

Customers
Identify the customer when designing the integration test envi-
ronment and test script. For example, consider the following
four categories of customer sets:

• End-users — should be the highest support priority
customer set.

• Operators — should be the second priority customer
because they usually are individuals who are an integral part
of the production process. This customer set often operates
and manages data centers.

• Maintainers — are hardware, software, and network
infrastructure personnel who maintain the operational
systems and provide on-the-floor support to the system user
community.

• Developers — the individual product developers, such as
the project managers, technology thrust managers, and
capability security certification administration.

Year 2000 Integration Testing
The Y2K integration testing is designed to ensure the continuing
integrity of a user’s base line and to provide customers and end
users with continuing integrity of that base line. While perform-
ing all integration testing, integration testers should seek to pro-
vide operational acceptance with zero open discrepancy reports
(DRs). The Y2K test scripts and test reports are designed to
ensure that the reported test results are accurate and repeatable.

The Y2K Integration Test Model involves its customers and
end-users in the integration testing process to ensure user
acceptance as well as technical base line acceptance for newly
delivered capabilities.

There are five basic phases in the Y2K Integration Test
Plan. While these phases were implemented in the order pre-
sented below, the awareness phase is an ongoing phase because
of software changes (e.g. through application of patches, new
builds, request for new functionality(ies), and results of the ren-
ovation phase) that occur throughout an application’s life cycle.

Awareness
In the awareness phase, all personnel responsible for the devel-
opment, testing, or who use the information technology (IT)
system have been educated about the importance and impact of
Y2K problems.

Assessment
This phase requires that all IT components are first unit tested
by a separate unit test group. Once the unit test group success-
fully tests a software component, that component is transferred
to the Y2K integration testers, who perform the Y2K integra-
tion test scripts on the set of software/hardware components
comprising the applications under test. When applications
under test are not unit tested, this Integration Test Model sug-
gests that integration testers should perform the integration test
script with the knowledge that sources of errors may not be eas-
ily traced. The assessment phase includes a strategy and plan to

correct the deficiencies with full regression testing of the appli-
cations under test.

Renovation
The renovation phase documents the software/hardware
changes, obsolescence of software/hardware, and upgrades to
software/hardware. (Renovation is performed by other activities
or organizations.) Full regression testing of renovated applica-
tions is strongly recommended.

Validation
This phase describes the test and verification process for all IT
software components possibly affected by the Y2K problem. All
validation testing is designed to occur in an isolated testing
environment wherein regression and future software integration
testing may be performed without impact on operational pro-
duction systems. Full regression testing of all replaced or con-
verted system components should be done.

Baseline
The base line phase describes the operational base line of soft-
ware wherein the newly tested software is integrated. A properly
constructed baseline

• supports multiple control levels;
• provides for storage and retrieval of configuration items/

units;
• provides for the sharing and transfer of configuration

items/units between control levels within the library;
• provides for the storage and recovery of archival versions of

configuration items/units;
• ensures correct creation of products from the software

base line library;
• supports generation of reports; and,
• provides for the maintenance of the library structure.

Objectives

The primary objective is to ensure full regression testing of all
software components for Y2K compliance.

In carrying out the integration testing responsibility, specif-
ic goals have been derived to govern the general operational test-
ing procedures and particularly Y2K integration testing to:

• maintain a focused commitment to and support of the
migration of legacy systems into a base line;

• identify and respond quickly to changing priorities;
• partner with your software system control personnel (e.g.

executive decision makers) and your user community to
ensure compatible, integrated test planning, scheduling,
and execution to minimize the need for partial capability
acceptance and retest;

• adhere to all of your software community standards,
policies, and procedures;

• provide testing that ensures the continuing integrity of your
operational base line;

• involve your customers and end-users to ensure user
acceptance as well as technical base line acceptance for
newly delivered capabilities;

A Y2K Integration Test Model

20 CROSSTALK The Journal of Defense Software Engineering September 1999

Software Engineering Technology

• ensure test scripts and test base lines are developed that can
produce accurate and repeatable results in satisfying the test
requirements;

• achieve scheduled testing deadlines established by the
customer;

• proceed to operational acceptance with zero open DRs.

Scope of Y2K Integration Testing
As a first step, the integration tester is urged to test for proper
processing of the current date and time prior to starting the
Y2K test dates. The integration tester should be a software tester
with professional experience who will review each test objective
and decide its applicability to the applications under test and to
modify those test objectives and test procedures to more proper-
ly match the functionality of the applications under test. This
professional experience allows the tester to make professional
judgements and evaluations based upon the test objective and
his or her testing experiences.

The integration tester must provide an audit trail. The rec-

ommended methodology is to leave each test objective and pro-
cedure as written. In the test report, the tester should document
each deviation from the objectives or procedures, with a ration-
ale for each change.

Certain dates are widely recognized as among the most
important in Y2K integration testing. These dates, which form
the basis for the Y2K test script, are shown in Table 1.

Global Positioning System Note: Users of the Global
Positioning System (GPS) should note that GPS does not have a
Y2K problem. However, a clock overflow problem, called the “Z-
count roll-over” does exist and is sometimes erroneously labeled as a
Y2K problem. This clock roll-over occurs every 1,024 weeks; the
first roll-over having occurred Aug. 21, 1999. Despite the publica-
tion of a GPS specification, some receiver manufacturers did not
account for the Z-count roll-over in the satellite clock. Some affected
receivers can be manually reset, or if they have flash memory or
removable Programmable Read Only Memory (PROM), they can
be reset to accommodate the roll-over. Those that cannot be reset
must be replaced.

The following selected generic test objectives are widely rec-
ognized as the important test objectives in Y2K integration test-
ing. It is the responsibility of the integration tester to select those
objectives that are applicable to the applications under test and
to develop a formal test procedure and a formal expected results
for each selected test objective. The selected generic test objec-
tives are shown in Table 2.

Sample Integration Test Script
Each Y2K test objective is developed into a specific test that the
tester uses as a basis for assessing conformance to Y2K require-
ments. Each tester is encouraged to pursue additional testing
when errors or abnormalities appear.

All testing procedures are reported in the test report with
the observed test results. Below is an example of a test objective
with its associated test procedure(s) and expected results.

Note for tester: When a test objective is not applicable to an
applications under test, use the following statement:

Recording results: The test objectives are not applicable to
the applications under test because the required functionality is
not supported.

Test No. 1
Test objective (TO) No. 1: Tests roll-over of the GPS 10 bit
epoch. Days are correctly recognized as Saturday and Sunday,
respectively.

Test procedure, Part A for TO No. 1A: Set system date to
Saturday, Aug. 21, 1999 (1999-08-21) at or about 23:00 hours.
Check each commercial-off-the-shelf (COTS)/government-off-
the-shelf (GOTS) application in turn for the correct date and
time. Exchange the current date and time between appropriate
applications and check that the date is correct within the time
period.

Note to tester: Set time sufficiently prior to midnight to
allow you to assess each of the applications under test in a time-
ly manner.

Expected results: Date must be Saturday Aug. 21, 1999

Test
Obj.#

Target Date to be Tested Description

0.0 Current day, date, and time Tests whether software properly processes
current day, date, and time. A basis to start
testing.

1.0 Saturday, Aug. 21, 1999
through Sunday, Aug. 22,
1999

Tests roll-over of the Global Positioning
System (GPS) 10 bit epoch. Days are
correctly recognized as Saturday and
Sunday, respectively. See GPS note.

2.0 Wednesday, Sept. 8, 1999
through Thursday, Sept. 9,
1999

The numeric value of the day (999) is equal
to the null void code sometimes used in
programming. Day is correctly recognized
as Thursday.

3.0 Thursday, Sept. 30, 1999
through Friday, Oct. 1,
1999

Tests critical roll-over of federal fiscal year
2000 roll-over. Days are correctly
recognized as Thursday and Friday,
respectively.

4.0 Friday, Dec. 31, 1999
through Saturday, Jan. 1,
2000

Critical midnight crossing from 1999 into the
year 2000. Days are correctly recognized as
Friday and Saturday, respectively.

5.0 Monday, Jan. 3, 2000 First day back to work for most employees
after year 2000 begins. Day is correctly
recognized as Monday.

6.0 Sunday, Jan. 9, 2000
through Monday, Jan. 10,
2000

Tests roll over from single digit days to
double digit days in year 2000. Day is
correctly recognized as Monday.

7.0 Tuesday, Feb. 29, 2000
through Wednesday, March
1, 2000

Tests critical roll-over of first leap day in the
first leap year after year 2000 begins. Days
are correctly recognized as Tuesday and
Wednesday, respectively.

8.0 Saturday, Sept. 30, 2000
through Sunday, Oct.1,
2000

Tests roll-over from single digit month to
double digit month in year 2000. Days are
correctly recognized as Saturday and
Sunday, respectively.

9.0 Sunday, Dec. 31, 2000
through Monday, Jan. 1,
2001

Critical midnight crossing from 2000 into
2001. Tests roll over to new millennium.
Days are correctly recognized as Sunday
and Monday, respectively. This date is the
last day of the second millenium on the
Gregorian calendar. The ordinal date
00.365 was the last day of 1900 (Julian
Calendar). Since 2000 is a leap year, its last
day is 00.366. An incomplete algorithm for
determining the length of the year might
cause an ordinal- based system to transition
into the new millennium a day too early.

10.0 Sunday, Feb. 29, 2004
through Monday, March 1,
2004

Tests roll over from first leap year not
affected by a century or millennium
transition. Days are correctly recognized as
Sunday and Monday, respectively.

Julian date (sometimes called Ordinal Date)
function should return Nth day of year.

Table 1. Y2K test script dates.

September 1999 CROSSTALK The Journal of Defense Software Engineering 21

between 23:00 and 23:59 hours.
Recording results: Record the result

for each application as “passed,” “failed,”
or “n/a.”

Test procedure, Part B for TO No. 1B:
Wait long enough to allow date to roll
over. Check applications for date and
time and again exchange the current date
and time between appropriate applica-
tions and check that the date is within
the correct time period.

Expected results: Date must be
Sunday, Aug. 22, 1999 between 00:00
and 00:59 hours.

Recording results: Record the result
for each application as “passed,” “failed,”
or “n/a.”

Test No. 9
Test objective No. 9: Critical midnight
crossing from 2000 into the year 2001.
Tests roll-over to new millennium. Days
are correctly recognized as Sunday and
Monday, respectively. This date is the last
day of the second millennium on the
Gregorian calendar. The ordinal date

00.365 was the last day of 1900 (Julian
Calendar). Since 2000 is a leap year, its
last day is 00.366. An incomplete algo-
rithm for determining the length of the
year might cause an ordinal-based system
to transition into the new millennium a
day too early.

Test procedure, Part A for TO No. 9:
Set system date to Sunday, Dec. 31, 2000
(2000-12-31) at or about 23:00 hours.
Check each COTS/GOTS application, in
turn, for the correct date and time.
Exchange the current date and time
between appropriate applications and
check that the date is correct within the
time period.

Note to tester: Set time sufficiently
prior to midnight to allow you to assess
each of the applications under test in a
timely manner.

Expected results: Date must be
Sunday, Dec. 31, 2000 between 23:00
and 23:59 hours.

Recording results: Record the result
for each application as “passed,” “failed,”
or “n/a.”

Test procedure, Part B for TO No. 9:
Wait long enough to allow date to roll
over. Check applications for date and
time and again exchange the current date
and time between appropriate applica-
tions and check that the date is within
the correct time period.

Expected results: Date must be
Monday, Jan. 1, 2001 between 00:00 and
00:59 hours.

Integration Test Report
The Integration Test Report should pro-
vide:

• a full description of the software/
hardware test environment

• a test number to identify the test
report

• the test preparations (e.g. obtaining
all software in a correctly configured
format)

• the test script (or a reference to the
formal test script to allow future
replication)

• a full description of the testing
procedures, including any additional
testing resulting from observed
abnormalities, or changes to the test
objective and/or test procedure and
the rationale for the changes

• the operator notes (e.g. background
information, history, glossary,
rational), as needed

• any acronyms used in the test report
• any points of contact (e.g. names,

addresses, and telephone numbers)
• a recommendation (e.g. whether the

software is approved for inclusion
into the standard build/up-grade; or
approval is denied with an
explanation.)

Lessons Learned
• There are several COTS products

that vendors claim are Y2K
compliant. These products are Y2K
compliant with a shift in the way
end-users enter their data into the
application; there are no technical
workarounds. It is the responsibility
of upper management to provide the
basis for a policy directive to change
the way end-users enter data. These
known problems were not used when
developing the suggested Y2K
integration testing script.

Generic Test Objective Rationale Example Test Elements
Event triggers: processes that
cause the automatic invocation
of a procedure at a specified
time.

Event triggers generally start
the execution of a procedure
when the current time is equal
to or greater than the
scheduled event time. Events
scheduled in 1999 to occur in
the year 2000 may be
misinterpreted when the
applications compare dates
with only two digit year
information.

Alarm systems should notify the
recipient on time.

E-mail should send a message
after a specified time.

Project management tools
should correctly schedule
milestone/dates into the next
century or millennium.

Automated periodic reports such
as MIS systems should produce
timely reports as scheduled.

Error handling: the process of
detecting and responding to
any discrepancy between a
computed, observed, or
measured value or condition
and the true, specified, or
theoretically correct value or
condition.

Whether the user interactively
inputs date information or
whether date data is supplied
via some other source, an
application should possess a
means to assess the legitimacy
of the date data. If the input
date data is not acceptable to
the processing logic, then an
error should be reported.

Error messages should report
that input date(s) are out of
range.

Error messages must display
dates in a format that reliably
differentiates centuries.

Queries, Filters, and Data
Views: These are higher-order
functions that accept a
predicate and a list and return
those elements of the list for
which the predicate is true.

These higher-order functions
generally operate by taking
portions of dates and
comparing values to similar
portions of other dates. The
ability to correctly complete
numerical comparisons on
dates is essential to these
functions.

All comparison (e.g. <, >=, >, =<)
and logical operators, (e.g. and,
or, not, xor) must be properly
processed.

Comparing or sorting dates:
sorted dates should be
correctly sorted in either
ascending or descending order.

All date-based comparisons or
sorts must be performed
correctly.

Data containing dates that are
passed between applications
must be correctly sorted, both
ascending and descending.

Table 2. Y2K generic test objectives.

A Y2K Integration Test Model

22 CROSSTALK The Journal of Defense Software Engineering September 1999

Software Engineering Technology

• Y2K integration testing is not
validating the results of unit testing.
A tester should review the documents
associated with unit testing and may
use them as a basis for the
integration testing. In some
instances, the tester may find
omissions of, or inconsistencies in,
required data in the unit test reports.
In these instances, the tester should
work to resolve these discrepancies
because inaccurate unit test reports
could invalidate the integration
testing efforts.

• Some applications may not coexist
on the same operational system. For
example, different versions of
Microsoft Office will not coexist on
the same testing system at the same
time. Therefore, two tests must be
conducted for each system. For
example, integration testing should
be conducted with one version of
MS Office and all other applications,
then with a different version of MS
Office and all other applications. ◆

About the Author
William H. Dashiell is a
computer scientist at the
Department of Defense
National Imagery and
Mapping Agency. He
has worked on the devel-
opment of software test-

ing by statistical methods using binomial
models, coverage designs, mutation testing,
and usage models. He has contributed to
the development of conformance and test-
ing protocols for federal, national, and
international information technology stan-
dards. He has a bachelor’s degree in busi-
ness administration and education, a mas-
ter’s degree in education technology, and a
doctorate in mathematics education from
the University of Maryland. He also has a
master’s degree in computer science from
Hood College in Maryland.

National Imagery and Mapping Agency
1200 First St. SE M/S N-61
Washington DC 20303-0001
Voice: 703-281-8836
Fax: 703-281-8957

Further Readings
1. U.S. General Accounting Office,

Accounting and Information
Management Division;
GAO/AIMD-10.1.21. Year 2000
Computing Crisis: A Testing Guide;
Exposure Draft; June 1998.

2. URL: http://www.nist.gov/y2k/datetest.
htm (Test Assertions for Date and
Time Functions).

3. URL: http://www.state.de.us/ois/y2000
/testplan.htm (Year 2000 Conversion
Directive Test Plan).

4. URL: http://www.microsoft.com/tech
net/topics/year2k/default.htm
(MicroSoft Year 2000 Readiness
Disclosure and Resource Center Web
site).

5. URL: http://tecnet0.jcte.jcs.mil:9000
/htdocs/teinfo/directives/soft/ds2167a.
htm (DoD-STD-2167A Defense
System Software Development).

6. URL: http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html

If your experience or research has produced information that
could be useful to others, CROSSTALK will get the word out.We
welcome articles on all software-related topics, but are espe-
cially interested in several high-interest areas. Drawing from
reader survey data, we will highlight your most requested
article topics as themes for future CROSSTALK issues. In future
issues, we will place a special, yet nonexclusive, focus on

Risk Management
February 2000

Article Submission Deadline: Oct. 1, 1999

Education and Training
March 2000

Article Submission Deadline: Nov. 3, 1999

Cost Estimation
April 2000

Article Submission Deadline: Dec. 4, 1999

We will accept article submissions on all software-related top-
ics at any time; issues will not focus exclusively on the featured
theme.

Please follow the Guidelines for CROSSTALK Authors, available on
the Internet at http://www.stsc.hill.af.mil.

Ogden ALC/TISE
ATTN: Heather Winward
CROSSTALK Associate Editor/Features
7278 Fourth Street
Hill AFB, UT 84056-5205

Or e-mail articles to features@stsc1.hill.af.mil. For more infor-
mation, call 801-775-5555 DSN 775-5555.

Call for Articles

